中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知正項數列在拋物線上;數列中,點在過點(0,1),以為斜率的直線上。
(1)求數列的通項公式;
(2)若成立,若存在,求出k值;若不存在,請說明理由;
(3)對任意正整數,不等式恒成立,求正數的取值范圍。

(1) 
(2)k=4
(3)

解析試題分析:解:(1)將點代入中得

直線l:

(2)
當k為偶數時,k+27為奇數

k=4
當k為奇數時,k+27為偶數
舍去
(Ⅲ)由
  9分



遞增  13分

  14分
考點:函數與數列
點評:主要是考查了函數為背景的數列 的通項公式以及數列的單調性的運用,屬于難度題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知數列中,,前
(Ⅰ)求證:數列是等差數列; (Ⅱ)求數列的通項公式;
(Ⅲ)設數列的前項和為,是否存在實數,使得對一切正整數都成立?若存在,求的最小值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定常數,定義函數,數列滿足.
(1)若,求
(2)求證:對任意,;
(3)是否存在,使得成等差數列?若存在,求出所有這樣的,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知=2,點()在函數的圖像上,其中=.
( 1 ) 證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知實數,求證:
(2)在數列{an}中,,寫出并猜想這個數列的通項公式達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對數列,規定為數列的一階差分數列,其中, 對自然數,規定階差分數列,其中
(1)已知數列的通項公式,試判斷是否為等差或等比數列,為什么?
(2)若數列首項,且滿足,求數列的通項公式。
(3)對(2)中數列,是否存在等差數列,使得對一切自然都成立?若存在,求數列的通項公式;若不存在,則請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列的各項都是正數,前項和為,且對任意,都有.
(1)求證:;    (2)求數列的通項公式。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為,滿足
(1)令,證明:
(2)求數列的通項公式。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

楊輝是中國南宋末年的一位杰出的數學家、數學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優美的規律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數;
(2)若第n行中從左到右第14個數與第15個數的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結論:第m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數。試用含有m、k的數學公式表示上述結論,并給予證明。

查看答案和解析>>

同步練習冊答案