中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(Ⅰ)求的單調區間;
(Ⅱ)求上的最值.

(1)上是增函數,上是增函數, ,故上是減函數
(2) 
 

解析試題分析:解:(I)           2分
          3分
若 
上是增函數,上是增函數         5分
若 ,故上是減函數            6分
(II)  
        10分
       12分
考點:函數的最值
點評:主要是考查了導數在研究函數單調性以及最值中的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知 
(1)求的最小值
(2)由(1)推出的最小值C
(不必寫出推理過程,只要求寫出結果)
(3)在(2)的條件下,已知函數若對于任意的,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若函數圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數恰有3個,求實數的取值范圍;
(3)對于函數定義域上的任意實數,若存在常數,使得都成立,則稱直線為函數
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)求函數在區間[0,3]上的最大值與最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


的單調區間
 兩點連線的斜率為,問是否存在常數,且,當時有,當時有;若存在,求出,并證明之,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求的單調區間;
(2)若函數上無零點,求的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;(3)當,方程有唯一實數解,求正數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

同步練習冊答案