設(shè)函數(shù)
.
(1)若函數(shù)
圖像上的點(diǎn)到直線
距離的最小值為
,求
的值;
(2)關(guān)于
的不等式
的解集中的整數(shù)恰有3個,求實數(shù)
的取值范圍;
(3)對于函數(shù)
定義域上的任意實數(shù)
,若存在常數(shù)
,使得
和
都成立,則稱直線
為函數(shù)
的
“分界線”.設(shè)
,試探究
是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.![]()
(1)![]()
(2)![]()
(3)![]()
解析試題分析:解:(1)因為
,得:
2分
則點(diǎn)
到直線
的距離為![]()
即
4分
(2)法1:由題意可得不等式
恰有三個整數(shù)解,
所以
6分
令
,由![]()
函數(shù)
的一個零點(diǎn)在區(qū)間
內(nèi),
則另一個零點(diǎn)在區(qū)間
內(nèi) 8分
所以
10分
法2:
恰有三個整數(shù)解,所以
,即
6分![]()
![]()
又
8分
![]()
10分
(3)設(shè)
則![]()
可得
,
所以當(dāng)
,
則
的圖像在
處有公共點(diǎn)
12分
設(shè)
存在分界線,方程為![]()
由
,恒成立,
即化為
恒成立
由
14分
下面證明
,
令![]()
![]()
可得![]()
所以
恒成立,
即
恒成立
所求分界線為:
16分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上是減函數(shù),求實數(shù)
的最小值;
(3)若
,使
成立,求實數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
的圖象在點(diǎn)
處的切線的傾斜角為
,對于任意的
,函數(shù)
在區(qū)間
上總不是單調(diào)函數(shù),
求實數(shù)
的取值范圍;
(3)求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,在點(diǎn)
處的切線方程為
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)若對于區(qū)間
上任意兩個自變量的值
,都有
,求實數(shù)
的最小值;
(Ⅲ)若過點(diǎn)
,可作曲線
的三條切線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,函數(shù)
,
(1)若
是函數(shù)
的極值點(diǎn),求
的值;
(2)在(1)的條件下,求函數(shù)
在區(qū)間
上的最值.
(3)是否存在實數(shù)
,使得函數(shù)
在
上為單調(diào)函數(shù),若是,求出
的取值范圍,若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)![]()
為奇函數(shù),其圖象在點(diǎn)
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為
.
(1)求
,
,
的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間,并求函數(shù)
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在x=
與x =l時都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)設(shè)
,試比較
與
的大小;
(2)是否存在常數(shù)
,使得
對任意大于
的自然數(shù)
都成立?若存在,試求出
的值并證明你的結(jié)論;若不存在,請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com