中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=aln xax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數yf(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3x2 (f′(x)是f(x)的導函數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)

(1)單調增區間為(1,+∞),減區間為(0,1).(2)不是,(3)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數圖象與軸異于原點的交點M處的切線為軸的交點N處的切線為, 并且平行.
(1)求的值;
(2)已知實數t∈R,求的取值范圍及函數的最小值;
(3)令,給定,對于兩個大于1的正數,存在實數滿足:,并且使得不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式y+10(x-6)2,其中3<x<6,a為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數存在極大值和極小值,求的取值范圍;
(2)設分別為的極大值和極小值,其中的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-aln xx(a≠0),
(1)若曲線yf(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數a的值;
(2)討論函數f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農業用地中規劃出一個高科技工業園區(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業園區的最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設直線是曲線的一條切線,.
(1)求切點坐標及的值;
(2)當時,存在,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

學校操場邊有一條小溝,溝沿是兩條長150米的平行線段,溝寬為2米,,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點為,對稱軸與地面垂直,溝深2米,溝中水深1米.
(Ⅰ)求水面寬;
(Ⅱ)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?

(Ⅲ)現在學校要把這條水溝改挖(不準填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問改挖后的溝底寬為多少米時,所挖的土最少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數),其圖象是曲線
(1)當時,求函數的單調減區間;
(2)設函數的導函數為,若存在唯一的實數,使得同時成立,求實數的取值范圍;
(3)已知點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線,設切線的斜率分別為.問:是否存在常數,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案