中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數滿足,其中a>0,a≠1.
(1)對于函數,當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數m的取值集合;
(2)當x∈(-∞,2)時,的值為負數,求的取值范圍。

(1)
(2)

解析試題分析:解:設,則,所以,
時,是增函數,是減函數且,所以是增函數,
同理,當時,也是增函數

得:
所以,解得:
(2)因為是增函數,所以時,,所以

解得:
考點:函數單調性的運用
點評:主要是考查了函數單調性,以及函數的性質的綜合運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數滿足:),
(1)用反證法證明:不可能為正比例函數;
(2)若,求的值,并用數學歸納法證明:對任意的,均有:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為常數.
(Ⅰ)當時,判斷函數在定義域上的單調性;
(Ⅱ)當時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,函數的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數的極小值;
(3)設斜率為的直線與函數的圖象交于兩點,(
證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且
(1)求
(2)判斷的奇偶性;
(3)判斷上的單調性,并證明。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求函數在區間上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,證明:對
(2)若,且存在單調遞減區間,求的取值范圍;
(3)數列,若存在常數,都有,則稱數列有上界。已知,試判斷數列是否有上界.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求曲線在點處的切線方程;
(2)若在區間上是減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數
(Ⅰ)若的值;
(Ⅱ)求函數的最大值和單調遞增區間。

查看答案和解析>>

同步練習冊答案