已知函數(shù)
.
(1)求函數(shù)
在區(qū)間
上的最大、最小值;
(2)求證:在區(qū)間
上,函數(shù)
的圖象在函數(shù)
的圖象的下方.
(1)函數(shù)
在區(qū)間
上的最大值為
,最小值為
;
(2)要證明在區(qū)間
上,函數(shù)
的圖象在函數(shù)
的圖象的下方,只要證明前者的最小值大于后者的最大值即可。
解析試題分析:解:(1)由已知
, 1分
當(dāng)
時(shí),
,所以函數(shù)
在區(qū)間
上單調(diào)遞增, 3分
所以函數(shù)
在區(qū)間
上的最大、最小值分別為
,
,所以函數(shù)
在區(qū)間
上的最大值為
,最小值為
; 6分
(2)證明:設(shè)
,則
.…8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/e/clshe3.png" style="vertical-align:middle;" />,所以
,所以函數(shù)
在區(qū)間
上單調(diào)遞減, ……9分
又
,所以在區(qū)間
上,
,即
,
所以在區(qū)間
上函數(shù)
的圖象在函數(shù)
圖象的下方.………13分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,并能結(jié)合極值得到最值,進(jìn)而得到圖象之間的關(guān)系,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,且對(duì)于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(I)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(II)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
⑴若
為
的極值點(diǎn),求
的值;
⑵若
的圖象在點(diǎn)
處的切線方程為
,求
在區(qū)間
上的最大值;
⑶當(dāng)
時(shí),若
在區(qū)間
上不單調(diào),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為12分)
已知函數(shù)
的圖像過坐標(biāo)原點(diǎn)
,且在點(diǎn)
處的切線的斜率是
.
(1)求實(shí)數(shù)
的值;
(2)求
在區(qū)間
上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,使得
是以
為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
且![]()
(Ⅰ)試用含
的代數(shù)式表示
;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)令
,設(shè)函數(shù)
在
處取得極值,記點(diǎn)
,證明:線段
與曲線
存在異于
、
的公共點(diǎn);
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com