設(shè)
其中
,曲線
在點(diǎn)
處的切線垂直于
軸.
(Ⅰ) 求
的值;
(Ⅱ) 求函數(shù)
的極值.
(1)
;(2)
在
處取得極小值![]()
解析試題分析:(1)因
,故![]()
由于曲線
在點(diǎn)
處的切線垂直于
軸,故該切線斜率為0,即
,
從而
,解得![]()
(2)由(1)知
,![]()
![]()
令
,解得
(因
不在定義域內(nèi),舍去),
當(dāng)
時(shí),
,故
在
上為減函數(shù);
當(dāng)
時(shí),
,故
在
上為增函數(shù);
故
在
處取得極小值![]()
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(2)通過(guò)研究導(dǎo)數(shù)的正負(fù),明確了函數(shù)的單調(diào)性及極值情況。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)若
為
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)當(dāng)
時(shí),方程
有實(shí)根,求實(shí)數(shù)
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(其中
,
),且函數(shù)
的圖象在 點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若
,滿足
,求實(shí)數(shù)m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(1)![]()
(2)是否存在實(shí)數(shù)
,使
在
上的最小值為
,若存在,求出
的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
在區(qū)間
上的最大、最小值;
(2)求證:在區(qū)間
上,函數(shù)
的圖象在函數(shù)
的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
過(guò)點(diǎn)P(1,3),且在點(diǎn)P處的切線
恰好與直線
垂直.求 (Ⅰ) 常數(shù)
的值; (Ⅱ)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)
,點(diǎn)P(
,0)是函數(shù)
的圖象的一個(gè)公共點(diǎn),兩函數(shù)的圖象在點(diǎn)P處有相同的切線.
(1)用
表示a,b,c;
(2)若函數(shù)
在(-1,3)上單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+![]()
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>
∈N*).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com