已知函數(shù)f(x)=x2+xsinx+cosx.
(1)若曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個(gè)不同交點(diǎn),求b的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈
R,a,b為常數(shù),已知曲線y=f(x)與y=g(x)在點(diǎn)(2,0)處有相同的切線l.
求a,b的值,并求出切線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x3-x2+ax-a(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值.
(2)若函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
的切線方程;
(2)對(duì)一切
,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),試討論
在
內(nèi)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
時(shí),證明:方程f(x)=f
在區(qū)間(2,+∞)上有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
,
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)討論
的單調(diào)性;
(3)若
有兩個(gè)極值點(diǎn)
和
,記過點(diǎn)
的直線的斜率為
,問是否存在
,使得
?若存在,求出
的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)y=xlnx+1.
(1)求這個(gè)函數(shù)的導(dǎo)數(shù);
(2)求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的極小值;
(2)當(dāng)
時(shí),過坐標(biāo)原點(diǎn)
作曲線
的切線,設(shè)切點(diǎn)為
,求實(shí)數(shù)
的值;
(3)設(shè)定義在
上的函數(shù)
在點(diǎn)
處的切線方程為
當(dāng)
時(shí),若
在
內(nèi)恒成立,則稱
為函數(shù)
的“轉(zhuǎn)點(diǎn)”.當(dāng)
時(shí),試問函數(shù)
是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com