中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖所示,一個半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,,現要將此鐵皮剪出一個等腰三角形,其底邊.

(1)設,求三角形鐵皮的面積;
(2)求剪下的鐵皮三角形的面積的最大值.

(1)三角形鐵皮的面積為;(2)剪下的鐵皮三角形的面積的最大值為.

解析試題分析:(1)利用銳角三角函數求出的長度,然后以為底邊、以為高,利用三角形面積公式求出三角形的面積;(2)設,以銳角為自變量將的長度表示出來,并利用面積公式求出三角形的面積的表達式,利用之間的關系,令將三角形的面積的表達式表示為以為自變量的二次函數,利用二次函數的單調性求出三角形的面積的最大值,但是要注意自變量的取值范圍作為新函數的定義域.
試題解析:(1)由題意知,
,
,
,即三角形鐵皮的面積為;
(2)設,則,
,

,由于,所以,
則有,所以,
,所以,
,
而函數在區間上單調遞增,
故當時,取最大值,即,
即剪下的鐵皮三角形的面積的最大值為.
考點:1.三角形的面積;2.三角函數的最值;3.二次函數的最值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

張林在李明的農場附近建了一個小型工廠,由于工廠生產須占用農場的部分資源,因此李明每年向張林索賠以彌補經濟損失并獲得一定凈收入.工廠在不賠付農場的情況下,工廠的年利潤(元)與年產量(噸)滿足函數關系.若工廠每生產一噸產品必須賠付農場元(以下稱為賠付價格).
(Ⅰ)將工廠的年利潤(元)表示為年產量(噸)的函數,并求出工廠獲得最大利潤的年產量;
(Ⅱ)若農場每年受工廠生產影響的經濟損失金額(元),在工廠按照獲得最大利潤的產量進行生產的前提下,農場要在索賠中獲得最大凈收入,應向張林的工廠要求賠付價格是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,當時,
(1)證明:;
(2)若成立,請先求出的值,并利用值的特點求出函數的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數   是奇函數.
(1)求實數的值;
(2)若函數在區間上單調遞增,求實數的取值范圍;
(3)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若上為增函數,求實數的取值范圍;
(Ⅱ)當時,方程有實根,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某公司生產品牌服裝的年固定成本是10萬元,每生產千件,須另投入2 7萬元,設該公司年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且 
(1)寫出年利潤W(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲利潤最大?(注:年利潤=年銷售收入 年總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一家公司生產某種產品的年固定成本為10萬元,每生產1千件該產品需另投入2.7萬元,設該公司一年內生產該產品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該公司在這一產品的產銷過程中所獲利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數的定義域和值域均為,求實數的值;
(2)若在區間上是減函數,且對任意的,總有,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

 
(1)當,求的取值范圍;
(2)若對任意,恒成立,求實數的最小值.

查看答案和解析>>

同步練習冊答案