中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知冪函數為偶函數,且在區間上是單調增函數
(1)求函數的解析式;
(2)設函數,其中.若函數僅在處有極值,求的取值范圍.

(1);(2).

解析試題分析:(1)根據函數的單調性分析出指數大于零,解不等式可得的取值范圍,再利用,然后根據冪函數為偶函數可得;(2)根據導數求極值,為使方程只有一個根,則必須恒成立,于是根據判別式可求.
試題解析:(1)在區間上是單調增函數,
       4分
時,不是偶函數,時,是偶函數,
.                    6分
(2)顯然不是方程的根.
為使僅在處有極值,必須恒成立,       8分
即有,解不等式,得.       11分
這時,是唯一極值. .         12分
考點:1.冪函數;2.函數的單調性;3.導數公式;4.函數的極值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的值域;
(2)若關于的方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知(a是常數,a∈R)
(Ⅰ)當a=1時求不等式的解集;
(Ⅱ)如果函數恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一企業生產某產品的年固定成本為10萬元,每生產千件需另投入2.7萬元,設該企業年內共生產此種產品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關于年產品(千件)的函數解析式;
(2)年產量為多少千件時,該企業生產此產品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實數根,求實數a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數m的取值范圍;
(Ⅲ)若函數y=f(x)(x∈[t,4])的值域為區間D,是否存在常數t,使區間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠有名工人,現接受了生產型高科技產品的總任務.已知每臺型產品由型裝置和型裝置配套組成,每個工人每小時能加工型裝置或型裝置.現將工人分成兩組同時開始加工,每組分別加工一種裝置(完成自己的任務后不再支援另一組).設加工型裝置的工人有人,他們加工完型裝置所需時間為,其余工人加工完型裝置所需時間為(單位:小時,可不為整數).
(1)寫出、的解析式;
(2)寫出這名工人完成總任務的時間的解析式;
(3)應怎樣分組,才能使完成總任務用的時間最少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中為常數,已知銷售價格為4元/千克時,每日可銷售出該商品5千克;銷售價格為4.5元/千克時,每日可銷售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
(Ⅰ)若的定義域和值域均是,求實數的值;
(Ⅱ)若在區間上是減函數,且對任意的,,總有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某企業有兩個生產車間,分別位于邊長是的等邊三角形的頂點處(如圖),現要在邊上的點建一倉庫,某工人每天用叉車將生產原料從倉庫運往車間,同時將成品運回倉庫.已知叉車每天要往返車間5次,往返車間20次,設叉車每天往返的總路程為.(注:往返一次即先從倉庫到車間再由車間返回倉庫)

(Ⅰ)按下列要求確定函數關系式:
①設長為,將表示成的函數關系式;
②設,將表示成的函數關系式.
(Ⅱ)請你選用(Ⅰ)中一個合適的函數關系式,求總路程 的最小值,并指出點的位置.

查看答案和解析>>

同步練習冊答案