下圖是一個按照某種規(guī)律排列出來的三角形數(shù)陣![]()
假設(shè)第
行的第二個數(shù)為![]()
(1)依次寫出第六行的所有6個數(shù)字(不必說明理由);
(2)寫出
與
的遞推關(guān)系(不必證明),并求出
的通項公式![]()
(3)設(shè)
,求證:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
,
,
,記![]()
,![]()
,![]()
(
),若對于任意
,
,
,
成等差數(shù)列.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ) 求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列
的前四項和為10,且
成等比數(shù)列
(1)求通項公式
(2)設(shè)
,求數(shù)列
的前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,前
項的和為
,對任意的
,
,
,
總成等差數(shù)列.
(1)求
的值并猜想數(shù)列
的通項公式![]()
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列
的前
項和為
,且
.
(1)求
的值及數(shù)列
的通項公式;
(2)求證:![]()
;
(3)是否存在非零整數(shù)
,使不等式![]()
對一切
都成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的首項為
,對任意的
,定義
.
(Ⅰ) 若
,
(i)求
的值和數(shù)列
的通項公式;
(ii)求數(shù)列
的前
項和
;
(Ⅱ)若
,且
,求數(shù)列
的前
項的和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com