已知
在
時(shí)有極大值6,在
時(shí)有極小值,求
的值;并求
在區(qū)間[-3,3]上的最大值和最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,![]()
(1)討論
的單調(diào)區(qū)間;
(2)若對(duì)任意的
,且
,有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)求函數(shù)
在區(qū)間[0,3]上的最大值與最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上無(wú)零點(diǎn),求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
在
處取得極值.
(1)求實(shí)數(shù)
的值;
(2)若關(guān)于
的方程
在區(qū)間
上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)證明:對(duì)任意的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)
時(shí),求
的最大值;(2)令
,(
),其圖象上任意一點(diǎn)
處切線的斜率
≤
恒成立,求實(shí)數(shù)
的取值范圍;(3)當(dāng)
,
,方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)
和“偽二次函數(shù)”
.
(Ⅰ)證明:只要
,無(wú)論
取何值,函數(shù)
在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點(diǎn)A(
),B(
),線段AB中點(diǎn)為C(
),記直線AB的斜率為k.
(1)對(duì)于二次函數(shù)
,求證
;
(2)對(duì)于“偽二次函數(shù)”
,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
且
).
(1)當(dāng)
時(shí),求證:
在
上單調(diào)遞增;
(2)當(dāng)
且
時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為偶函數(shù),曲線
過(guò)點(diǎn)(2,5),
.
(1)若曲線
有斜率為0的切線,求實(shí)數(shù)
的取值范圍;
(2)若當(dāng)
時(shí)函數(shù)
取得極值,確定
的單調(diào)區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com