如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點,△DAB ≌△DCB,EA=EB=AB=1,PA=
,連接CE并延長交AD于F.![]()
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
科目:高中數學 來源: 題型:解答題
已知四邊形ABCD滿足
,E是BC的中點,將△BAE沿AE翻折成
,F為
的中點.
(1)求四棱錐
的體積;
(2)證明:
;
(3)求面
所成銳二面角的余弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示的幾何體中,面
為正方形,面
為等腰梯形,
,
,
,且平面![]()
平面
.
(1)求
與平面
所成角的正弦值;
(2)線段
上是否存在點
,使平面![]()
平面
?
證明你的結論.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.![]()
(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com