中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)在定義域R上為減函數,且對任意x,y∈R,都有f(x+y)=f(x)+f(y),且f(1)=1,
(1)證明:函數y=f(x)是奇函數.
(2)求不等式f(log2(x+2))+f(log2x)>3的解集.
分析:(1)根據已知中對任意的x、y∈R,都有f(x+y)=f(x)+f(y),令x=y=0,易得f(0)=0,令y=-x,結合函數奇偶性的定義,即可得到結論;
(2)計算f(3)=3,結合函數y=f(x)在定義域R上為減函數,將不等式化為具體不等式,即可求得結論.
解答:(1)證明:∵對任意的x、y∈R,都有f(x+y)=f(x)+f(y),
令x=y=0得,f(0)=f(0)+f(0)=2f(0),∴f(0)=0
令y=-x得,f(x-x)=f(x)+f(-x)=f(0)=0,即f(-x)=-f(x)
∴函數f(x)為奇函數;
(2)解:∵f(x+y)=f(x)+f(y),且f(1)=1
∴f(3)=3
∴不等式f(log2(x+2))+f(log2x)>3等價于不等式f(log2(x+2))+f(log2x)>f(3)
∵函數y=f(x)在定義域R上為減函數,
∴log2(x+2)+log2x<3
x+2>0
x>0
x(x+2)<8
,∴0<x<2
∴不等式的解集為(0,2).
點評:本題考查的知識點是抽象函數及其應用,考查函數單調性與奇偶性的結合,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、已知函數y=f(x)是R上的奇函數且在[0,+∞)上是增函數,若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

2、已知函數y=f(x+1)的圖象過點(3,2),則函數f(x)的圖象關于x軸的對稱圖形一定過點(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是偶函數,當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是定義在R上的奇函數,當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案