已知函數(shù)
.
(1)求
的值域G;
(2)若對(duì)于G內(nèi)的所有實(shí)數(shù)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
解:(Ⅰ)∵f(t)=log2t在t∈[
,8]上是單調(diào)遞增的,∴l(xiāng)og2
≤log2t≤log28.
即
≤f(t)≤3.∴f(t)的值域G為[
]. -------4 分
(Ⅱ)由題知-x2+2mx-m2+2m≤1在x∈[
]上恒成立
-2mx+m2-2m+1≥0在x∈[
]上恒成
立.-----6分
令g(x)=x2-2mx+m2-2m+1,x∈[
].只需gmin(x)≥0即可.
而g(x)=(x-m)2-2m+1,x∈[
].
(1)當(dāng)
m≤
時(shí),gmin(x)=g(
)=
-3m+m2+1≥0.∴4m2-12m+5≥0.解得m≥
或m≤![]()
.∴m≤
(2)當(dāng)
<m<3時(shí),gmin(x)=g(m)= -2m+1≥0.解得m≤
這與
<m<3矛盾.----10
(3)當(dāng)m≥3時(shí),gmin(x)=g(3)=10
+m2-8m≥0.解得m≥4+
或m≤4-
.而m≥3,
∴m≥4+
. ----12分綜上,實(shí)數(shù)m的取值范圍是 (-∞,
)∪[4+
,+∞].
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量
與產(chǎn)量
之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)
與產(chǎn)量
之間的關(guān)系式為
.
(Ⅰ)寫出該陶瓷廠的日銷售利潤(rùn)
與產(chǎn)量
之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f (x)=lg(ax-bx)(a >1,0< b<1)
(1) 求f (x)
的定義域;
(2) 此函數(shù)的圖象上是否存在兩點(diǎn),過(guò)這兩點(diǎn)的直線平行于x軸?
(3) 當(dāng)a、b滿足什么條件時(shí)f (x)恰在(1,+∞)取正值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知二次函數(shù)
=
,且不等式
的解集為![]()
(1)求
的解析式
(2)若不等式
對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.(12分)已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/5/odvj9.gif" style="vertical-align:middle;" />,且同時(shí)滿足:(Ⅰ)對(duì)任意
,總有
;(Ⅱ)
;(Ⅲ)若
,則有![]()
(1)試求
的值;
(2)試求函數(shù)
的最大值;
(3)試證明:當(dāng)
時(shí),
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/3/19a6q3.gif" style="vertical-align:middle;" />,并滿足以下條件:①對(duì)任意的
;
②對(duì)任意的
,都有
;③
.
1、求
的值;
2、求證:
是
上的單調(diào)遞增函數(shù);
3、解關(guān)于
的不等式:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知p:方程x2+mx+1=0有兩個(gè)不等的
負(fù)實(shí)根,q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根。若p或q為真,p且q為假。求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若定義在
上的奇函數(shù)
滿足當(dāng)
時(shí),
.
(1)求
在
上的解析式;
(2)判斷
在
上的單調(diào)性,并給予證明;
(3)當(dāng)
為何值時(shí),關(guān)于方程
在
上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)二次函數(shù)
滿足:(1)
,(2)被
軸截得的弦長(zhǎng)為2,(3)在
軸截距為6,求此函數(shù)解析式。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com