中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,當時,恒有
(1)求證:是奇函數;
(2)如果為正實數,,并且,試求在區間[-2,6]上的最值.

(1)證明見解析;(2)最大值為1,最小值為-3..

解析試題分析:解題思路:(1)利用奇函數的定義進行證明;(2)先證明的單調性,再求在的最值.
規律總結:(1)證明函數奇偶性的步驟:①驗證函數定義域是否關于原點對稱,②判斷的關系,③下結論;(2)先利用函數單調性的定義證明函數的單調性,再根據單調性求最值.注意點:判定或證明函數的奇偶性時,一定不要忘記驗證函數的定義域是否關于原點對稱.
試題解析: (1)函數定義域為,其定義域關于原點對稱,
,令
,令
,得
,得為奇函數.
(2)設

,,,即上單調遞減.
為最大值,為最小值.


在區間上的最大值為1,最小值為-3.
考點:1.函數的奇偶性;2.函數的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的圖象上一點P(1,0),且在P點處的切線與直線平行.
(1)求函數的解析式;
(2)求函數在區間[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的結論下,關于x的方程在區間[1,3]上恰有兩個相異的實根,求實數c的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足,且當時,.
(1)證明:函數是周期函數;(2)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是不全為的實數,函數,方程有實根,且的實數根都是的根,反之,的實數根都是的根.
(1)求的值;(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是定義在上的奇函數,當時,
(1)求
(2)求的解析式;
(3)若,求區間

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,函數的最大值是14,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

規定[t]為不超過t的最大整數,例如[12.6]=12,[-3.5]=-4,對任意實數x,令f1(x)=[4x],g(x)=4x-[4x],進一步令f2(x)=f1[g(x)].
(1)若x=,分別求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同時滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題


函數的最小值為             

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

的反函數為,則方程的解           

查看答案和解析>>

同步練習冊答案