中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,
(1)當時, 若個零點, 求的取值范圍;
(2)對任意, 當時恒有, 求的最大值, 并求此時的最大值。

(1) (2)最大值為2  

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數
(Ⅰ)討論函數在定義域內的極值點的個數;
(Ⅱ)若函數處取得極值,對,恒成立,
求實數的取值范圍;
(Ⅲ)當時,試比較的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 
已知a∈R,函數f(x)=4x3-2ax+a.
(1)求f(x)的單調區間;
(2)證明:當0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若函數處與直線相切;
①求實數的值;②求函數上的最大值;
(2)當時,若不等式對所有的都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知,…,.
(Ⅰ)請寫出的表達式(不需證明);
(Ⅱ)求的極小值
(Ⅲ)設的最大值為的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分16分)設
(1)請寫出的表達式(不需證明);
(2)求的極值
(3)設的最大值為的最小值為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(Ⅰ) 當時,求函數的極值;
(Ⅱ)當時,討論函數的單調性.     (Ⅲ)(理科)若對任意及任意,恒有 成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分13分)
為了保護環境,某工廠在政府部門的支持下,進行技術改進: 把二氧化碳轉化為某種化工產品,經測算,該處理成本(萬元)與處理量(噸)之間的函數關系可近似地表示為: , 且每處理一噸二氧化碳可得價值為萬元的某種化工產品.
(Ⅰ)當 時,判斷該技術改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?  
(Ⅱ) 當處理量為多少噸時,每噸的平均處理成本最少.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本大題12分)
已知函數上為單調遞增函數.
(Ⅰ)求實數的取值范圍;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步練習冊答案