中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x-1)的圖象關于點(1,0)對稱,且當x∈(-∞,0)時,f(x)+xf′(x)<0成立,若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的從大到小排列是
c>a>b
c>a>b
分析:由y=f(x-1)的圖象關于點(1,0)對稱,得到f(x)關于原點對稱,即函數f(x)為奇函數,然后構造函數g(x)=xf(x),利用導數判斷函數g(x)的單調性,然后比較大小即可.
解答:解:∵函數y=f(x-1)的圖象關于點(1,0)對稱,
∴f(x)關于原點對稱,即函數f(x)為奇函數.
設g(x)=xf(x),則g(x)為偶函數,
∴當x∈(-∞,0)時,
g'(x)=f(x)+xf′(x)<0,此時函數單調遞減,
即x∈(0,+∞)時,函數g(x)單調遞增.
則a=g(30.3)=(30.3)•f(30.3),
b=g(logπ3)=(logπ3)•f(logπ3),
c=g(log3
1
9
)=(log3
1
9
)•f(log3
1
9
),
∵30.3>1,0<logπ3<1,log3
1
9
=-2,
∴g(log3
1
9
)=g(-2)=g(2),
∵2>30.3>logπ3,
∴g(2)>g(30.3)>g(logπ3),
即c>a>b.
故答案為:c>a>b.
點評:本題主要考查函數奇偶性和單調性的應用,以及利用導數研究函數的單調性問題,利用條件構造函數是解決本題的關鍵,綜合性較強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、已知函數y=f(x)是R上的奇函數且在[0,+∞)上是增函數,若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

2、已知函數y=f(x+1)的圖象過點(3,2),則函數f(x)的圖象關于x軸的對稱圖形一定過點(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是偶函數,當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是定義在R上的奇函數,當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案