設(shè)數(shù)列
的前
項和為
,且方程
有一個根為
,
.
(1)證明:數(shù)列
是等差數(shù)列;
(2)設(shè)方程
的另一個根為
,數(shù)列
的前
項和為
,求
的值;
(3)是否存在不同的正整數(shù)
,使得
,
,
成等比數(shù)列,若存在,求出滿足條件的
,若不存在,請說明理由.
(1)利用等差數(shù)列的定義證明即可,(2)
,(3)存在不同的正整數(shù)
,使得
,
,
成等比數(shù)列
解析試題分析:(1)∵
是方程
的根,![]()
∴![]()
當(dāng)
時,
,∴
,
解得
,∴
2分
當(dāng)
時,
,∴![]()
化簡得
,∴
,∴
,
∴
,又
5分
∴數(shù)列
是以
為首項,
為公差的等差數(shù)列 6分
(2)由(1)得,![]()
∴
,帶入方程得,
,∴
,
∴原方程為
,∴
,∴
8分
∴
①
②
① — ②得![]()
![]()
11分
,∴
12分
(3)由(1)得,
,假設(shè)存在不同的正整數(shù)
,使得
,
,
成等比數(shù)列,則![]()
即
,∵
14分
∴
,化簡得,![]()
∴
,又∵![]()
,且![]()
∴
∴
,∴
16分
∴存在不同的正整數(shù)
,使得
,
,
成等比數(shù)列
考點:本題考查了數(shù)列的通項與求和
點評:數(shù)列的通項公式及應(yīng)用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標(biāo)實施的深入,高考關(guān)注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的首項
,且
(
)
①設(shè)
,求證:數(shù)列
為等差數(shù)列;②設(shè)
,求數(shù)列
的前
項和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于無窮數(shù)列
和函數(shù)
,若
,則稱
是數(shù)列
的母函數(shù).
(Ⅰ)定義在
上的函數(shù)
滿足:對任意
,都有
,且
;又?jǐn)?shù)列
滿足:
.
求證:(1)
是數(shù)列
的母函數(shù);
(2)求數(shù)列
的前項
和
.
(Ⅱ)已知
是數(shù)列
的母函數(shù),且
.若數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列
的前
項和為
,且
.
(1)求
的值及數(shù)列
的通項公式;
(2)求證:![]()
;
(3)是否存在非零整數(shù)
,使不等式![]()
對一切
都成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是單調(diào)遞增的等差數(shù)列,首項
,前
項和為
,數(shù)列
是等比數(shù)列,首項![]()
(1)求
和
的通項公式.
(2)設(shè)
,數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列
的通項公式為
,數(shù)列
的前n項和為
,且滿足![]()
(1)求
的通項公式;
(2)在
中是否存在使得
是
中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com